M.Sc.-I/CHEM-103C/18

 $2 \times 5 = 10$

M. Sc. 1st Semester Examination, 2018 CHEMISTRY

(Physical Chemistry)

Paper: CHEM 103C Course ID: 11453

Time: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Attempt *any five*:

	(a)	What are the limitations of collision theory?
	(b)	What is primary solvation number?
	(c)	Explain the significance of volume of activation.
	(d)	'Quantum Mechanics is a probabilistic approach'. Do you believe that?
	(e)	State the significance of de Broglie equation.
	(f)	Write down the time dependent Schrödinger equation for an electron moving in the coulombic field of a nucleus.
	(g)	What is the physical significance of commutation relation between two operators?
2.	Attempt <i>any four</i> : 5×4=20	
	(a)	Derive the expression of rate constant following double layer activated complex. 5
	(b)	Deduce the rate law of a unimolecular gaseous molecule according to collision theory following Lindemann hypothesis. Comment on the situation at high pressure and low pressure conditions. $4+1=5$
	(c)	Work out the expression of rate constant of a bimolecular like gaseous molecules. 5
	(d)	Make a connotative note on the point group of Ferrocene. 5
	(e)	State Bohr correspondence principle and illustrate it with an example of particle in a box. 5
	(f)	How does electron propagate in free space? Discuss it briefly. 5
	(g)	What is orthonormality? Show that wave function of particle in one-dimensional box maintaining orthogonality. $2+3=5$

11453/9389 Please Turn Over

3. Attempt any one: $10 \times 1 = 10$

- (a) (i) Deduce the expression of ion association constant following Bjerrum's treatment.
 - (ii) Derive the point group of $[Co(en)_3]^{3+}$ with proper pictorial representation. 5+5=10
- (b) (i) A gas phase reaction $2A \rightarrow P$ is bimolecular with an activation energy of 24.000 cal mole⁻¹. The molecular weight and molecular diameter of A are 60 and 35Å, respectively. Calculate on the basis of collision theory the specific rate constant of the reaction at $27^{\circ}C$.
 - (ii) Write down Hammett equation giving the significance of each term.
 - (iii) What do you know about 'Abelian Group'?

(iv) 'An electron can not stay at nucleus'. — Comment.

3+2+2+3=10